

django-anylink documentation

Generic linking in Django. Includes support for RichText editors like TinyMCE.

What is django-anylink

django-anylink is a generic linking module for Django. Using this module, you
can create links for many usecases. You’ll find yourself just jusing the
AnyLinkField to create links to different Django models or external urls.
You don’t have to take care for changing urls. AnyLink resolves links on request.

django-anylink provides a Link database, an model field and some handy widgets
for the daily use.

Besides that, django-anylink is easy extendable. By default, the module provides
external urls and model links wich have a get_absolute_url method.

Contents

	Installation

	TinyMCE Integration

	Configuration
	ANYLINK_EXTENSIONS
	ExternalLink

	ModelLink

	Link Multiusage

	Usage
	Adding an link to your model

	Get the link url and other attributes

	Writing your own link extension

	Contribution
	Django Code
	Testing the code

	Documentation

	JavaScript Code

Indices and tables

	Index

	Search Page

Installation

To install django-anylink just use your preferred Python package installer:

pip install django-anylink

Add anylink to your Django settings

INSTALLED_APPS = (
 # other apps
 'anylink',
)

Now, you should define at least one link extension, for example external links.

ANYLINK_EXTENSIONS = (
 'anylink.extensions.ExternalLink',
)

django-anylink auto-creates models for those migrations. To prevent them landing in
Python’s site packages directory, explicitly define (and create!) a module for them:

MIGRATION_MODULES = {
 'anylink': 'migrations.anylink',
}

Details on how to use django-anylink in your Django application can be found
in the Configuration section.

TinyMCE Integration

django-anylink comes with a TinyMCE plugin already integrated. To use it
you only have to install django-tinymce according to it’s documentation
and enable the anylink plugin.

TINYMCE_DEFAULT_CONFIG = {
 'theme': 'advanced',
 'plugins': 'anylink',
 'theme_advanced_buttons1': (
 'anylink',
),
 'anylink_url': '/anylink/anylink/',
}

Configuration

Luckily you don’t have to configure that much to use django-anylink.

ANYLINK_EXTENSIONS

To add a new link target, you have to update the ANYLINK_EXTENSIONS
setting.

This directive is a list of linkable target (external urls, Django models with
get_absolute_url methods and so on). Every entry can be a single class path
or a tuple consisting of a class path and a configuration dictionary.

ExternalLink

This extension provides a external url field. No other configuration is needed.

Example with external links
ANYLINK_EXTENSIONS = (
 'anylink.extensions.ExternalLink',
)

ModelLink

The ModelLink extension provides a foreign key the configured model. It is
required that the model is registered in the Django admin interface. Also, the
model needs to have a get_absolute_url method.

Example with model links with MyModel
ANYLINK_EXTENSIONS = (
 ('anylink.extensions.ModelLink', {'model': 'myapp.MyModel'}),
)

For details on writing your own extensions, please see the Writing your own link extension section.

Link Multiusage

To use anylink instance multiple times set ANYLINK_ALLOW_MULTIPLE_USE to True

Example with app using link multiple times
ANYLINK_ALLOW_MULTIPLE_USE = True

Usage

Before you can use django-anylink, you have to install the module and
configure it. Please see Installation for more details.

Adding an link to your model

To add a link field to your model, just use the AnyLinkField

from django.db import models

from anylink.fields import AnyLinkField

class MyModel(models.Model):
 whatever = models.CharField(max_length=255)

 link = AnyLinkField()

Now, you have an link field in your model. This link field is a
ForeignKey internally.

Get the link url and other attributes

Lets assume, you implemented your Django model like the example above.
Here is a example, how you would access the attributes of the link.

url = obj.link.get_absolute_url() # URL to link.
name = obj.link.text # link text/link name
title = obj.link.title # title attribute of the link
target = obj.link.target # target of the link, for example _self or _blank
css_class = obj.link.css_class # optional css class

Hint

Please remember, only the get_absolute_url method and target always
return a values. All other attributes (text, title, css_class
can be blank.

Please see the example projects for more details.

Writing your own link extension

To extend django-anylink lets assume you have a Download model. This model
doesn’t have a get_absolute_url method. Theirfore you want to write your own
link extension.

Lets have a look at the code first.

from django.core.urlresolvers import reverse

from anylink.extensions import BaseLink

class DownloadLink(BaseLink):
 def configure_model(self, model):
 # configure_model is called by django-anylink upon initialization.
 # We add a field to anylink model to keep the object reference.
 # Make sure the field is null-able, anylink will ensure its filled out
 # if the link type is set to DownloadLink.
 model.add_to_class(self.get_name(), models.ForeignKey(
 'myapp.Download', blank=True, null=True)

 def get_absolute_url(self, link):
 # Get the obj instance using the get_name method.
 obj = getattr(link, self.get_name())
 # return a reverse'd url or None if no obj is set.
 return obj and reverse('myurl', kwargs={'id': obj.pk}) or None

As you can see here, the Link extension has two important methods.
The configure_model method and the get_absolute_url method. Please refer
to the comments and the code for more details on this topic.

Contribution

If you like to contribute to this project please read the following guides.

Django Code

You have to install some dependencies for development and testing.

$ pip install -e .[tests]

Testing the code

django-anylink uses py.test for testing. Please ensure that all tests pass
before you submit a pull request. py.test also runs PEP8 and PyFlakes checks
on every run.

We created a Makefile to make some commands more easy to run.

This is how you execute the tests and checks from the repository root directory.

$ py.test

Or with the shortcut in the Makefile.

$ make tests

If you want to generate a coverage report, you can use the following command.

$ make coverage

If you want a coverage report with html output.

$ make coverage-html

Documentation

django-anylink uses Sphinx for documentation. You find all the sources files
in the docs/source folder.

To update/generate the html output of the documentation, use the following
command inside the docs folder.

$ make html

Please make sure that you don’t commit the build files inside docs/build.

JavaScript Code

TBD

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 django-anylink documentation

 		
 Installation

 		
 TinyMCE Integration

 		
 Configuration

 		
 ANYLINK_EXTENSIONS

 		
 ExternalLink

 		
 ModelLink

 		
 Link Multiusage

 		
 Usage

 		
 Adding an link to your model

 		
 Get the link url and other attributes

 		
 Writing your own link extension

 		
 Contribution

 		
 Django Code

 		
 Testing the code

 		
 Documentation

 		
 JavaScript Code

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

